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SUMMARY 

Drag problems associated with the addition of external stores t o  airplanes 
are  reviewed. Current analytic techniques f o r  estimating drag penalties associ- 
ated with the addition of stores i n  both subsonic and supersonic f l i g h t  are dis-  
cussed. I n  subsonic f l i gh t ,  the  drag penalty caused by the addition of external 
stores i s  shown t o  be a function of the type of s tore  ins ta l la t ion .  I n  super- 
sonic f l i gh t ,  drag i s  shown t o  be a function of the type of store in s t a l l a t ion  
and also of the location of the store in s t a l l a t ion  with respect t o  the r e s t  of 
the airplane components. 
of the store i t s e l f  can reduce the  drag penalty of the s tore  instal la t ion.  

Special s tore  arrangements and attention t o  the design 

INTRODUCTION 

The current trend i n  mil i tary airplanes i s  toward carrying a large var ie ty  
of external stores i n  the form of bombs, rockets, rocket launchers, and f u e l  
tanks. 
the aerodynamicist designs the airplane t o  be essent ia l ly  nclean’f as.shown i 
figure 1, while the airplane will probably f l y  i n  s 
as  shown i n  f igure 2. The addition of external s to  
and by various methods of attachment can lead t o  pr  
and perhaps compromise the mission of the  airplane. I n  figure 2 are shown only 
a few of the possible arrangements of s tores  - it has been estimated tha t  there 

The essence of the problem associated with these external stores i s  tha t  

c & f i p r a t i o n ,  3 
; E6nbi nht i on s 
eases i n  drag 

CLEAN CONFIGURATION 

Figure 1 +, Figure 2 

Research Center, May 23-27, 1966, and published i n  NASA 3P-124. 
’Presented at the c lass i f ied  ffConference on Aircraft  Aerodynamics, ‘I Langley 
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are roughly 17 million store n one currently operatio+ 
N a v y  airplane. 

A great quantity of data on external stores has been published i n  the  past 
15 years by the NACA, the NASA, and other research organizations. A ra ther  
extensive bibliography which covers such problem areas as store effects  on per- 
formance, s tore  characterist ics,  and configuration and interference e f fec ts  is  
included herein. A para l l e l  bibliography, covering s tore  separation character- 
i s t i c s  and store loads, i s  contained i n  reference 1. 

The present paper i s  concerned with the drag characterist ics of the store- 
airplane configuration. Selected data from some of the reports i n  the  bibliog- 
raphy are  presented and some general conclusions regarding store drag are made. 
A directory of the bibliography i s  included i n  table  I as a convenience t o  the 
reader i n  locating specific information. 

SYMBOLS 

CD drag coefficient 

D diameter of store 

M Mach number 

s to re  nose radius rY 

A 
... 

Subscripts : 

1P l a s t  p a i r  

meas measured 

min minimum 

0 zero l i f t  

store isolated store 

DISCUSSION OF KNAlXTIcl TECFLNIQUES 

The discussion of analytic techniques i s  limited t o  some of the fundamental 

The basic factors which must be considered i n  estimating the zero- 
problems associated w i t h  the drag of external stores or of the  store-airplane 
combination. 
l i f t  drag of the airplane with external stores i n  the subsonic region are  skin- 
f r i c t ion  drag, base drag, form drag, and interference drag. Estimates can be 
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adiiy m a d e  fo r  the skin- 
ll-documented techniques, as a l l  these drag components are essent ia l ly  the 

drag components of the isolated store. Interference effects,  par t icular ly  
store-store interference where stores are mounted i n  close proximity, may lead 
t o  a significant drag increase. Some limfted data on these effeqts ex is t  and 
are included i n  the bibliography. There is, however, a lack of information on 
the drag of such ins ta l la t ion  details as fuses, mounting lugs, sway braces, 
et  cetera, and consequently, these details are not considered i n  the drag 
analysis. 

Factors t o  be evaluated i n  the  supersonic region are skin-friction drag, 
base drag, asymmetry and interference drag, and wave drag. Skin-friction 
and base drag can be estimated by using well-known techniques, asymmetry 
drag and interference e f fec ts  can be estimated by using techniques described 
i n  reference 2, and the wave drag, which must be estimated f o r  the  store and 
airplane i n  combination, can be calculated by using a method programed f o r  
an electronic computer. This zero- l i f t  wave-drag program i s  described i n  
reference 3. 

It should be pointed out that ,  although great quantit ies of wind-tunnel 
external-store data exist ,  i n  many cases insuff ic ient  knowledge of the nature 
of the boundary layer  leads t o  inaccwacies i n  skin-friction estimation and 
extrapolation t o  ful l -scale  values. 

Within the. super-sonic region, the accuracy of the drag estimates a l so  
depends on how closely the configuration s a t i s f i e s  the assumptions of l inea- 
rized theory upon which the  computer programs are based. 
correlations have been made by using these estimating techniques on various 
versions of supersonic-transport configurations. 
long and slender with th in  wing sections and w i t h  a l l  components integrated t o  
produce a low-drag configuration. The average f igh ter  airplane, however, i s  
not l i ke ly  t o  be slender; the wing elements may be re la t ive ly  thick; and the 
external s tores  may be added w i t h  l i t t l e  regard t o  favorable interference 
effects.  Figure 3 shows the correlation 

a current fighter airplane i n  the transonic 
and supersonic f l ight  regimes. 
f iguration i s  a variable-sweep airplane 
with the wings swept f u l l y  aft. 

and 5. 
beneath the  wing - four s tores  for the 
transonic region and two stores f o r  the 

the stores-off configuration i s  predicted 
very well  i n  the subcr i t ica l  Mach number , I 

t ion  of stores i s  a l so  predicted very 
closely . Figure 3 

Numerous close 

These designs are generally 

between theory and experiment obtained f o r  ANALYSIS AND CORRELATION 

b The con- 

The 

The stores are pylon mounted 
EXPERIMENT THEORY experimental data are from references 4 .06 - ---- NO STORES - -- 2 STORES 

4 STORES * --- 
‘ D a @ ” l  2 ------= z ‘ 

supersonic region. The level of drag for  .O 

range, and the increment due t o  the addi- M 
0 .6 1.0 1.4 1.8 22 26 
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r the stores-off corrfigura- 
tion is less than that for the experiment. 
data and stores-off data is predicted reasonably well by the analytic methods. 
It appears that some further refinement of the analytic techniques would be 
useful in making more accurate quantitative estimates of the drag characteris- 
tics of configurations such as this. 

The'increment between the stores-pn 

DISCUSSION OF EXPERIMFJNTAL DATA 

The remainder of this paper is concerned with a nmber of particular store 
installations. 
current fighter airplanes. 

Most of these store arrangements are typical of those found on 

Analysis of the data in figure 4 gives an idea of the subsonic drag pen- 
alty associated with several types of store installations. 
ures 4 and 'j were taken from a number of the reports in the bibliography, 
ordinate is the increment in experimental zero-lift drag due to the addition of 
the store or stores. The abscissa is the drag of the isolated store multiplied 
by the number of stores in the installation. A l l  coefficients are based on the 
wing area of the particulas configuration. No attempt was made to predict the 
drag increment of the store-support system; thus, the experimental value is the 
total drag penalty of the store and installation. 
equality between the experimental drag increment and the isolated store drag. 
Examples of the more common installations are the pylon-mmted single store, 
the pylon-mounted multiple rack, and the tangent-mounted store, where the store 
is mounted flush with the aircraft surface. Less common perhaps is the semi- 
submerged installation. It is not surprising that this semisubmerged installa- 
tion shows low values of measured drag compared with the isolated store drag 
since roughly half the wetted area is submerged within the airplane. 

The data in fig- 
The 

The solid line represents 

INCREMENTAL STORE-INSTALLATION DRAG 
SUBSONIC 

0 MULTIPLE 
RACK 

A TANGENT s 

0 .004 .00B ,012 .016 
(CD,o)sto,e X NO. OF STORES 

INCREMENTAL STORE-INSTALLATION DRAG 
SUPERSONIC 

,006 1 
(ACD.o)rneos 

0 .002 .004 .006 .cQe 
(CQ o) M X NO. Cf STORES 

0 .002 .004 .006 .cQe 
(CQ o) M X NO. Cf STORES 

Figure 4 
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I n  general, f o r  stores 
gent mount and the pylon 
ies, while the pylon--mounted multiple-rack ins ta l la t ion  causes a f a i r l y  

sizable drag penalty. 

Figure 5 i l l u s t r a t e s  the  same type of analysis f o r  the supersonic Mach 
number range. Again, the t o t a l  measured increase i n  zero- l i f t  drag due t o  the 
ins ta l la t ion  of the s tore  or stores is  plotted against a simple multiple of the 
isolated-store drag. Eere again the coefficients are based on the wing area 
fo r  the par t icular  configuration. The Mach number range i s  f r o m  about 1.4 t o  
2.5. Figure 6 shows sketches of the various ins ta l la t ions  keyed t o  the data 
points i n  figure 5. 
with four Falcon missiles. 
the skin f r i c t i o n  of the  rather  large end-plate instal la t ion.  It should be 
noted that some decrease i n  the  s tore  drag increment occurred at l i f t .  
point @ represents the same type of eonfiguration but with two Falcon missiles. 
The deviation f r o m  the l i n e  of equality i s  somewhat l e s s  f o r  t h i s  ins ta l la t ion  
than f o r  ins ta l la t ion  1 . Eowever the  decrease i n  the drag increment at l i f t  
f o r  ins ta l la t ion  @ i s  negligible. Ins ta l la t ion  @ i s  a rather  unique 
mounting system; that  is, the six missiles were s t ing  mounted on the  leading 
edge of the  wing. A portion of the drag reduction i s  undoubtedly due t o  the 
elimination of missile base drag by the support system. 
the underwing ins ta l la t ion  of the same s ix  missilese 
drag over that f o r  the  leading-edge ins ta l la t ion  is: apparent; however, the 
departure from the l i n e  of equality can be at t r ibuted i n  par t  t o  the increased 
skin-friction drag of the pylon instal la t ions.  

D a t a  point @ i s  f o r  a model of a current f igh ter  airplane 
The increment of ins ta l la t ion  drag i s  due i n  par t  t o  

Data 

0 

Ins ta l la t ion  @ i s  f o r  
A signif-icant increase i n  

Ins ta l la t ions  @ and @, f o r  a research model, indicate the large inf lu-  
ence of s tore  location on drag.. I n  this par t icular  case, t he  forward location 
led  t o  a very high drag level compared w i t h  that f o r  the rearward location. 
Instal la t ions @ t o  @ are f o r  a model of a current fighter airplane with a 
variety of Sparrow instal la t ions,  The two fuselage mounts (0 and @I) show 

STORE INSTALLATIONS 

@FOUR TIP-MOUNTED FALCONS 

@TWO TIP-MOUNTED FALCONS 

@E;SE$Ay$E; 4 SIX UNDER-WING 
FALCONS 

5 TWO UNDER-WING TANKS 
(FORWAR0 LOCATION) 

Yl 
6' TWO UNDER-WING TANKS 

(REARWARD LOCATION) 

TWO SPARROWS 

TWO PHOENIX MISSILES 
@ (NACELLE PYLON) 

-- 

FOUR SPARROWS 

1 TWO PHOENIX MISSILES 
@ (FUSELAGE PYLON 1 

Figure 6 
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considerably 1; si 
@, respectively . 
nacelles and on the  fuse la  
smaller drag penalty than 

It can be seen tha t ,  f o r  the  supersonic range i n  particular,  not only the  

ding s tore  wing mounts'@ ,pa  
In  st a l a t  ions n mounts on the engiAe 

shows an appreciably 

type of ins ta l la t ion  but a l so  i t s  location on the  a i r c ra f t  can considerably 
affect  the magnitude of the drag. For the  supersonic range, consideration of 
the s tore  i n  the design of t he  a i r c r a f t  using area-rule techniques would cer- 
t a in ly  be of benefit.  

Some of the  ins ta l la t ions  mentioned are perhaps worthy of' fur ther  comment. 
Figure 7 presents experimental results f o r  a tangent-mounted s tore  ins ta l la t ion  
and a pylon-mounted instal la t ion.  
s tore  i s  approximately the estimated mount f o r  skin-friction and base drag. 
The added increment f o r  the pylon is, however, considerably more than can be 
at t r ibuted t o  skin-friction drag. The reason f o r  this  phenomenon is, at pres- 
ent, unknown, although it i s  probably associated with the amount of the s tore  
submerged within the boundary layer. In  addition, the pylon was  rather blunt 
and there may be some mutual interference e f fec ts  among the store, pylon, and 
airplane. 

The increment of drag f o r  the tangent-mounted 

Figure 8 shows data from reference 6 f o r  a research model with a large 
s tore  semisubmerged i n  the  fuselage. D a t a  are presented f o r  the clean configu- 
ration, that is, with the cavity faired,  f o r  the configuration with the s tore  
instal led,  and for the configuration w i t h  the open cavity after ejection of the 
store.  

In  many s tore  ins ta l la t ions  of the  semisubmerged type, the cavity remaining 
after ejection of the s tore  may cause a drag penalty greater than t h a t  of the 
ins ta l led  store.. However, for t h i s  model, the cavity was  designed by using 
area-rule considerations t o  prevent such a drag penalty. Because the  cavity 
drag can be a signif-icant fac tor  i n  a semisubmerged s tore  instal la t ion,  it 
should be considered when evaluating an ins ta l la t ion  of th i s  type. 

TANGENT AND PYLON INSTALLATIONS 

TANGENT MOUNT 
'D.0 1 
,02 .Oil 

LI I I I I I 1 I 
0 .6 .7 .E .9 1.0 1.1 1.2 1.3 

M 

SEMISUBMERGED STORE INSTALLATION 

I 
1.0 1.2 1.4 

Figure 7 Figure 8 
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Figure 9 presents data P 
rows of three tandem-mounted stores. On the l e f t  side of the  figure i s  shown 

.12- 

.IO 

.08 

.06 

CD,min 

.W 

.M 

the  gross drag increment f o r  the one, two, 
and three s tore  pa i r  ins ta l la t ions  over 
the Mach number range from 0.6 t o  0.9. On 
the r igh t  side of the  figure is  shown the 
increment i n  drag due t o  the addition of 
t he  last s tore  pa i r  f o r  various Mach num- 
bers. It can be seen tha t  the increment 
i n  drag f o r  each additional pa i r  decreases. 
For a blunt-nosed, blunt-based store, t h i s  
type of ins ta l la t ion  should be of consider- 
able benefit.  

- 

- 

- 

- 

- 

Figure 10 i s  concerned more with 
individual stores than with s tore  ins ta l -  
la t ions.  
The i n s t u a t i o n  consists of 16 stores, 
9 i n  the free stream and 7 tandem mounted. 
The drag increment of the ins ta l la t ion  i s  
quite large; however, a significant increase 
i s  noted f o r  a change i n  corner radius of 
the stores. This increment remained rela- 
t i ve ly  constant over the Mach number range 
of the tests. This figure i l l u s t r a t e s  the 
basis of the  s tore  drag problem, tha t  is ,  
if  it i s  necessary t o  hang a multitude of 
s tores  from the  aircraft, then a large drag 
penalty w i l l  l i ke ly  ex is t .  In  t h i s  case, 
the  drag of the configuration was more than 
doubled by the  addition of stores. 

The data are from reference 7. 

TANDEM STORE INSTALLATION 

A%, min 

--U 

0 .6 .7 .8 .9 O, 2 3 
M STORE PAIR 

Figure 9 

EFFECTS OF STORE NOSE BLUNTNESS 

H -  
STORES AND 
PYLONS OFF 

L I  8 I I 
0 .6 .7 .8 .9 1.0 1.1 1.2 

M 

Figure 10 

CONCLUDING RIWAFKS 

Analytic methods have been shown t o  give a reasonably good estimate of the 
The drag penalty due t o  drag increment due t o  the addition of external stores. 

the addition of s tores  i n  the subsonic speed range has been shown t o  depend i n  
par t  on the  type of i n s t a l l a t ion j  the lowest drag penalty i s  associated with a 
semisubmerged ins ta l la t ion  and the largest  drag penalty with a multiple-rack 
instal la t ion.  A t  supersonic speeds, the drag of the s tore  depends not only on 
the type of ins ta l la t ion  but a lso on the s tore  location. 
methods through area-rule considerations offers  promise of drag reduction i n  
the supersonic flight regime. 
of s tore  drag are tandem store  arrangements and the  e f fec ts  of the shape of the 
store i tself .  

Langley Research Center, 

U s e  of the  analytic 

Other factors  t o  be considered i n  the reduction 

National Aeronautics and Space Administration. 
Langley Station, Hampton, Ya., May 24, 

126 -13-03-22-23 
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